Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds
نویسندگان
چکیده
In this paper, we first give an intersection theory for moduli problems for nonlinear elliptic operators with certain precompact space of solutions in differential geometry. Then we apply the theory to constructing Gromov-Witten invariants for general symplectic manifolds.
منابع مشابه
Contact hypersurfaces in uniruled symplectic manifolds always separate
We observe that nonzero Gromov-Witten invariants with marked point constraints in a closed symplectic manifold imply restrictions on the homology classes that can be represented by contact hypersurfaces. As a special case, contact hypersurfaces must always separate if the symplectic manifold is uniruled. This removes a superfluous assumption in a result of G. Lu [Lu00], thus implying that all c...
متن کاملElliptic Gromov-Witten Invariants And Virasoro Conjecture
The Virasoro conjecture predicts that the generating function of Gromov-Witten invariants is annihilated by infinitely many differential operators which form a half branch of the Virasoro algebra. This conjecture was proposed by Eguchi, Hori and Xiong [EHX2] and also by S. Katz [Ka] (see also [EJX]). It provides a powerful tool in the computation of Gromov-Witten invariants. In [LT], the author...
متن کاملAlgebraic and symplectic Gromov-Witten invariants coincide
Gromov-Witten invariants “count” (pseudo-) holomorphic curves on algebraic or symplectic manifolds. This amounts to intersection theory on moduli spaces of such curves. Because in general these are non-compact, singular and not of “expected dimension”, a rigorous mathematical definition is far from trivial. For a reasonably large class of manifolds including Fano and Calabi-Yau manifolds this h...
متن کاملVirtual Moduli Cycles and Gromov-witten Invariants of Algebraic Varieties
The study of moduli spaces plays a fundamental role in our understanding of the geometry and topology of manifolds. One example is Donaldson theory (and more recently the Seiberg-Witten invariants), which provides a set of differential invariants of 4-manifolds [Do]. When the underlying manifolds are smooth algebraic surfaces, then they are the intersection theories on the moduli spaces of vect...
متن کاملReal Gromov-Witten Theory in All Genera and Real Enumerative Geometry: Properties
The first part of this work constructs positive-genus real Gromov-Witten invariants of realorientable symplectic manifolds of odd “complex” dimensions; the present part focuses on their properties that are essential for actually working with these invariants. We determine the compatibility of the orientations on the moduli spaces of real maps constructed in the first part with the standard node...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996